In vitro pre-vascularisation of tissue-engineered constructs A co-culture perspective
نویسندگان
چکیده
In vitro pre-vascularization is one of the main vascularization strategies in the tissue engineering field. Culturing cells within a tissue-engineered construct (TEC) prior to implantation provides researchers with a greater degree of control over the fate of the cells. However, balancing the diverse range of different cell culture parameters in vitro is seldom easy and in most cases, especially in highly vascularized tissues, more than one cell type will reside within the cell culture system. Culturing multiple cell types in the same construct presents its own unique challenges and pitfalls. The following review examines endothelial-driven vascularization and evaluates the direct and indirect role other cell types have in vessel and capillary formation. The article then analyses the different parameters researchers can modulate in a co-culture system in order to design optimal tissue-engineered constructs to match desired clinical applications.
منابع مشابه
Altering the Architecture of Tissue Engineered Hypertrophic Cartilaginous Grafts Facilitates Vascularisation and Accelerates Mineralisation
Cartilaginous tissues engineered using mesenchymal stem cells (MSCs) can be leveraged to generate bone in vivo by executing an endochondral program, leading to increased interest in the use of such hypertrophic grafts for the regeneration of osseous defects. During normal skeletogenesis, canals within the developing hypertrophic cartilage play a key role in facilitating endochondral ossificatio...
متن کاملPhysiologic compliance in engineered small-diameter arterial constructs based on an elastomeric substrate.
Compliance mismatch is a significant challenge to long-term patency in small-diameter bypass grafts because it causes intimal hyperplasia and ultimately graft occlusion. Current engineered grafts are typically stiff with high burst pressure but low compliance and low elastin expression. We postulated that engineering small arteries on elastomeric scaffolds under dynamic mechanical stimulation w...
متن کاملGeneration of co-culture spheroids as vascularisation units for bone tissue engineering.
Cell spheroids represent attractive building units for bone tissue engineering, because they provide a three-dimensional environment with intensive direct cell-cell contacts. Moreover, they allow for co-culture of both osteoblasts and vessel-forming cells, which may markedly increase their survival and vascularisation after transplantation. To test this hypothesis, we generated co-culture spher...
متن کاملMacrophage-mediated angiogenic activation of outgrowth endothelial cells in co-culture with primary osteoblasts.
The successful vascularisation of complex tissue engineered constructs for bone regeneration is still a major challenge in the field of tissue engineering. In this context, co-culture systems of endothelial cells and osteoblasts represent a promising approach to advance the formation of a stable vasculature as well as an excellent in vitro model to identify factors that positively influence bon...
متن کاملContribution of outgrowth endothelial cells from human peripheral blood on in vivo vascularization of bone tissue engineered constructs based on starch polycaprolactone scaffolds.
In the present study we assessed the potential of human outgrowth endothelial cells (OEC), a subpopulation within endothelial progenitor cell cultures, to support the vascularization of a complex tissue engineered construct for bone. OEC cultured on starch polycaprolactone fiber meshes (SPCL) in monoculture retained their endothelial functionality and responded to angiogenic stimulation by VEGF...
متن کامل